On an Integral Inequality
نویسندگان
چکیده
In this article we give different sufficient conditions for inequality (∫ b a f(x)dx )β ≥ ∫ b a f(x)dx to hold.
منابع مشابه
The Sugeno fuzzy integral of concave functions
The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....
متن کاملResults of the Chebyshev type inequality for Pseudo-integral
In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results to the case of comonotone functions.
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملA Version of Favard's Inequality for the Sugeno Integral
In this paper, we present a version of Favard's inequality for special case and then generalize it for the Sugeno integral in fuzzy measure space $(X,Sigma,mu)$, where $mu$ is the Lebesgue measure. We consider two cases, when our function is concave and when is convex. In addition for illustration of theorems, several examples are given.
متن کاملOn a decomposition of Hardy--Hilbert's type inequality
In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.
متن کاملA new block by block method for solving two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds
In this paper, we propose a new method for the numerical solution of two-dimensional linear and nonlinear Volterra integral equations of the first and second kinds, which avoids from using starting values. An existence and uniqueness theorem is proved and convergence isverified by using an appropriate variety of the Gronwall inequality. Application of the method is demonstrated for solving the ...
متن کامل